SECTION 2 - GENERAL

CHAPTER 1 - AIR TRAFFIC SERVICES

OBJECTIVES

1.1 The objectives of the Air Traffic Services are to:
 a) Prevent collisions between aircraft;
 b) Prevent collisions between aircraft moving on the manoeuvring area and between aircraft in the air.
 c) Expedite and maintain a safe and orderly flow of air traffic;
 d) Provide advice and information useful for the safe and efficient conduct of flights;

1.2 The objectives of ATC as prescribed above do not include prevention of collision between aircraft in flight and terrain or obstacles thereon, so that the procedures prescribed do not relieve the pilot from his responsibilities for ensuring that any instructions or clearances issued by the ATC are safe in this respect. When an IFR flight is vectored by RADAR, ATC is responsible for ensuring adequate terrain clearance.

1.3 Objective (a) to (c) will only be applied by ATC in respect of:
 a) IFR, and SVFR flights in controlled airspaces; and
 b) All flights in ATZs & CTRs.

 c) Objective (d) will be applied by ATS in respect of all known flights in all airspaces.

1.4 Type of ATC services:

<table>
<thead>
<tr>
<th>Service Name</th>
<th>Radio Callsign</th>
<th>Abbreviation</th>
<th>Airspace of Control</th>
</tr>
</thead>
<tbody>
<tr>
<td>Clearance Delivery Service</td>
<td>Clearance</td>
<td>_DEL</td>
<td>None</td>
</tr>
<tr>
<td>Ground Movement Control Service</td>
<td>Ground</td>
<td>_GND</td>
<td>Manoeuvring Area</td>
</tr>
<tr>
<td>Tower Control Service</td>
<td>Tower</td>
<td>_TWR</td>
<td>Active Runway(s) & ATZ/CTR</td>
</tr>
<tr>
<td>Departure or Approach or Director or RADAR Service</td>
<td>Approach or Departure or Radar</td>
<td>_APP</td>
<td>TMA, possible portion of CTA As defined in local procedures</td>
</tr>
<tr>
<td></td>
<td></td>
<td>_DEP</td>
<td></td>
</tr>
<tr>
<td>Area Control or Sector Control Service</td>
<td>Area or Radar</td>
<td>_CTR</td>
<td>TMA./CTA/UTA As defined in local procedures</td>
</tr>
<tr>
<td>Flight Information Service (ICAO) Flight Service Station (IVAO)</td>
<td>Information</td>
<td>_FSS</td>
<td>Uncontrolled airspace</td>
</tr>
</tbody>
</table>

Note 1: The radio callsign is always preceded by the station’s or ATSU’s name.
 E.g. Cape Town Ground ; Port Elizabeth Approach ; Johannesburg Area North

Note 2: The Abbreviation is always preceded by the station or ATSU’s ICAO code.
 E.g. FACT_GND ; FAPE_APP ; FAJS_CTR
CHAPTER 2 - DIVISION OF THE AIRSPACE

GENERAL

2.1 In order to facilitate the provision of the ATS the airspace is divided as detailed in the following paragraphs.
2.2 Particulars of the various airspaces implemented in the Republic can be obtained, where possible, from the ZA website.

FLIGHT INFORMATION REGIONS (FIRs)

2.3 FIRs are airspace’s of defined dimensions within which Flight Information Service and Alerting Service are provided.
2.4 ICAO Regional Meetings determine the boundaries of the FIRs in order to allocate responsibility for the provision of the ATS to specified States.
2.5 States are expected to divide the airspace’s within their FIRs into the following types of airspace as necessary for the efficient provision of the ATS to the expected air traffic;
 a) Controlled Airspaces;
 b) Advisory Airspaces; and
 c) Information Airspaces.

CONTROLLED AIRSPACE

2.6 Aircraft operating in these airspaces are proved with a full air traffic control service in accordance with the airspace classification. Controlled airspaces are sub-divided into the following types:-
 a) Aerodrome Traffic Zone (ATZ)
 b) Control Zone (CTR)
 c) Control Area (CTA)
 d) Terminal Control Area (TMA)
 e) Airway (AWY)
 f) RNAV
 Note 1: Airways are indicated on charts by parallel lines indicating the width of the Airway, normally 10 nm, and with a single letter A, B, G, R, or W - or in the case of Upper Airway preceded by the letter U - followed by 2 or 3 figures, e.g: UZ2, UQ10, R987, UR987

UNCONTROLLED AIRSPACE

ADVISORY AIRSPACE

2.7 In advisory airspace all participating IFR flights receive an air traffic advisory service and ALL flights receive flight information service if requested.

INFORMATION AIRSPACE

2.8 Air Traffic Control Service is not provided in uncontrolled airspaces, only information useful to the safe and efficient conduct of flights is provided.
2.9 Designated uncontrolled airspaces include:
 a) Aerodrome Traffic Area (ATA)
 Note: This is a non-ICAO type of airspace and service.
 b) Flying Training Areas
 The designated flying areas are shown on aeronautical maps and described in the AIP.
 c) Prohibited, Restricted or Danger Areas
 These are shown on aeronautical maps. They may intrude into or be encircled by Controlled or Advisory Airspace.
 d) Information Routes
 Frequently flown routes through uncontrolled airspace. They are shown on charts by a single line with the appropriate letter of the route number and the letter F. e.g. W86F.
CHAPTER 3 - CLASSIFICATION OF AIRSPACE

3.1 All airspaces are classified according to determine the flight rules that apply within each particular airspace and the type of ATC service (if provided). The classes are Class A, B, C, D, E, F & G. Knowing the rules that apply to each class of airspace is very important for both ATC & pilot.

Note: In South Africa, we only use 4 of classes, namely A,C,F & G. They are the ones in bold.

<table>
<thead>
<tr>
<th>Class</th>
<th>Type Of Flight</th>
<th>Separation Provided</th>
<th>Service Provided</th>
<th>Communication Requirements</th>
<th>Clearance Required</th>
</tr>
</thead>
<tbody>
<tr>
<td>A</td>
<td>IFR Only</td>
<td>All aircraft</td>
<td>Air traffic control service</td>
<td>Continuous two way</td>
<td>Yes</td>
</tr>
<tr>
<td>B</td>
<td>IFR</td>
<td>All aircraft</td>
<td>Air traffic control service</td>
<td>Continuous two way</td>
<td>Yes</td>
</tr>
<tr>
<td></td>
<td>VFR</td>
<td></td>
<td>Air traffic control service</td>
<td>Continuous two way</td>
<td>Yes</td>
</tr>
<tr>
<td>C</td>
<td>IFR</td>
<td>IFR from IFR</td>
<td>Air traffic control service</td>
<td>Continuous two way</td>
<td>Yes</td>
</tr>
<tr>
<td></td>
<td>VFR</td>
<td>IFR from VFR</td>
<td>ATC separates from IFR from VFR VFR from VFR by traffic info (& Traffic avoidance advice on request)</td>
<td>Continuous two way</td>
<td>Yes</td>
</tr>
<tr>
<td></td>
<td>VFR</td>
<td>VFR from VFR</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>D</td>
<td>IFR</td>
<td>IFR from IFR</td>
<td>ATC service including traffic info about VFR flights (& traffic avoidance advise on request)</td>
<td>Continuous two way</td>
<td>Yes</td>
</tr>
<tr>
<td></td>
<td>VFR</td>
<td>Nil</td>
<td>Traffic information between VFR & IFR.</td>
<td>Continuous two way</td>
<td>Yes</td>
</tr>
<tr>
<td>E</td>
<td>IFR</td>
<td>IFR from IFR</td>
<td>ATC service including traffic info about VFR flights as far as practicable</td>
<td>Continuous two way</td>
<td>Yes</td>
</tr>
<tr>
<td></td>
<td>VFR</td>
<td>Nil</td>
<td>Traffic info as far as practicable</td>
<td>No</td>
<td>No</td>
</tr>
<tr>
<td>F</td>
<td>IFR</td>
<td>IFR from IFR</td>
<td>Air traffic advisory service Flight information service</td>
<td>Continuous two way or by aircraft relay</td>
<td>No</td>
</tr>
<tr>
<td></td>
<td>VFR</td>
<td>Nil</td>
<td>Flight information service</td>
<td>Continuous two way or by aircraft relay</td>
<td>No</td>
</tr>
<tr>
<td>G</td>
<td>IFR</td>
<td>Nil</td>
<td>Flight information service</td>
<td>Continuous two way</td>
<td>No</td>
</tr>
<tr>
<td></td>
<td>VFR</td>
<td>Nil</td>
<td>Flight information service</td>
<td>No</td>
<td>No</td>
</tr>
</tbody>
</table>
3.2 A very simplified diagram of airspace commonly found in South Africa.

3.2.1 The CTA (includes the UTA above, not shown) are usually controlled by an Area Controller.

3.2.2 The CTA is normally Class C and the UTA is always Class A as it only exists above FL200. The Airways shown on either side of the CTA can sometimes be low enough to join to a TMA as well.

3.2.3 The TMA are usually controlled by an Approach controller and are mostly Class C.

3.2.4 The CTR are always controlled by an Aerodrome controller and are mostly Class C.

3.2.5 Airspace laterally below a TMA, but excluding CTRs & ATZs are sometimes classified as a Special Rules Area or SRA for short, this is uncontrolled airspace. There is a designated frequency for such airspace and a set of rules or procedures to follow when flying in such airspace.

3.2.6 All airspace thus outside of CTRs, TMAs, CTAs are uncontrolled airspace, which in South Africa is mostly Class G airspace. There are very little advisory routes left in the country which is Class F.
CHAPTER 4 - MILITARY AIRCRAFT IN CONTROLLED AIRSPACE/AERODROMES

4.1 Military aircraft operating in controlled airspaces at civil aerodromes will comply with civil air traffic procedures and ATSU shall provide them with normal air traffic services and facilities.

FORMATION FLIGHTS

4.2 Flights of military aircraft operating as a formation on the same flight plan, and flying or intending to fly in IMC, may request ATC clearance for flights within controlled airspaces. In order to avoid undue delay to military or civil traffic, clearance may be granted for such flights provided the aircraft of such formations can maintain separation from each other visually, and are able to communicate with the formation leader.

4.2 The identification of the leader of the formation must be shown on the flight plan, together with the number of aircraft in the flight, and all ATC communications and clearances should be addressed to the leader.

4.3 If the weather conditions encountered are such that the aircraft of the formation are unable to maintain separation visually, the leader will inform ATC. On receipt of such a message ATC will:
 a) If practicable, take action to obtain normal separation standards between all aircraft in the formation as quickly as possible, using radar if available;
 b) If normal separation cannot be obtained, the aircraft shall be given as much separation from each other as is possible and the formation given directions to enable it to leave the controlled airspace by the shortest possible route.

4.4 In all cases where such clearances are requested, the controller of the ATCU concerned is to ensure the leader of the formation is aware of the conditions of the clearance as detailed above.

4.5 The ATCU concerned is to ensure that the issuance of such clearances will not delay or in any way adversely affect normal civil flying operations.
CHAPTER 5 - TYPE OF FLIGHTS

GENERAL

5.1 Flights are classified into types according to the flight rules (regulations) under which the flight is conducted. The flight rules, which are detailed in the Air Navigation Regulations, are:

a) General Flight Rules;
b) Visual Flight Rules (VFR);
c) Instrument Flight Rules (IFR);
d) Special Visual Flight Rules (SVFR).

5.2 ALL flights must be conducted in accordance with the General Flight Rules AND either VFR, IFR or Special VFR rules.

5.3 For definitions of the various flight rules see Section 1.
CHAPTER 6 - VISUAL AND INSTRUMENT FLIGHT RULES

6.1 A VFR flight shall be conducted so that the aircraft is flown:-
 a) with visual reference to the surface by day and to identifiable objects by night and at no
 time above more than scattered cloud within a radius of 5nm of the aircraft in flight; and
 b) in conditions of visibility and distance from cloud equal to or greater than those
 specified below:

<table>
<thead>
<tr>
<th>Type of Airspace</th>
<th>Flight Visibility</th>
<th>Distance from Cloud Vertical – Horizontal</th>
</tr>
</thead>
<tbody>
<tr>
<td>CTR – ATZ – ATA</td>
<td>5KM/3NM</td>
<td>500FT</td>
</tr>
<tr>
<td>ALL OTHER AIRSPACES</td>
<td></td>
<td>2000FT</td>
</tr>
<tr>
<td>At or below 1000ft above the surface by day only</td>
<td>1,5KM</td>
<td>CLEAR CLOUDS</td>
</tr>
<tr>
<td>Above 1000ft to FL100 above the surface by day only</td>
<td>5KM</td>
<td>500FT</td>
</tr>
<tr>
<td>From the surface up to and including FL100 by night</td>
<td>5KM</td>
<td>500FT</td>
</tr>
<tr>
<td>Above FL100 by day and night</td>
<td>8KM</td>
<td>1000FT</td>
</tr>
</tbody>
</table>

VISUAL METEREOLOGICAL CONDITIONS (VMC)

6.2 When an aircraft is flying in Met Conditions equal to or greater than that specified above,
 the aircraft is said to be in VMC.
 Note: A VFR flight must always be conducted in VMC.

INSTRUMENT METEREOLOGICAL CONDITIONS (IMC)

6.3 When an aircraft is flying in Met Conditions less than those above, the aircraft is said to be
 in IMC.
6.4 VFR Flight is not permitted above FL200.
6.5 VFR flights may be granted Special VFR clearances within a CTR in terms of 7.10 of this
 Chapter, in which case they are absolved from observing the weather minima for
 controlled airspace’s whilst operating in the CTR on such clearances.
6.6 Unless authorised by ATC on a SVFR clearance no VFR flight shall take off from, land at,
 or approach to land at an aerodrome within a CTR or fly within the Control Zone when the
 ground visibility is less than 3nm and/or the ceiling is less than 1500ft.
6.7 When an aircraft maintains two-way radio communications with the control tower or
 aerodrome flight information service unit, that aircraft may, in respect of a cross-country
 flight, leave an aerodrome traffic zone (which does not comprise a CTR or part of a CTR)
 or aerodrome traffic area when the ground visibility is equal to or greater than 5km and
 the ceiling equal to or higher than 500ft.
6.8 Outside a CTR, ATZ or an ATA it is the responsibility of the pilot-in-command to decide
 whether conditions permit flight in accordance with the VFR.

SPECIAL VFR (SVFR)

6.10 A SVFR flight is a flight subject to prior authorisation of ATC but not subject to IFR and
 conducted by day, within a CTR within which compliance with IFR has been declared
 mandatory.
6.11 The minimum weather conditions under which the ATC may grant special VFR
 clearances are:
 a) within sight of ground; and
 b) clear of cloud; and
 c) ground visibility of not less than 1500m
6.12 Standard separation shall be provided between all SVFR flights and between SVFR
 flights and aircraft operating under IFR.
6.13 IFR flights must not be delayed in order to accommodate requests for a SVFR
 clearance.
6.14 Aircraft operating Special VFR within a CTR when the zone has been declared IMC will not normally be given a specific level to fly; they will merely be instructed to remain clear of cloud and within sight of ground. If, however, it is necessary to provide vertical separation from aircraft above, the Special VFR aircraft is to be instructed not to fly above a specified level e.g. “ZSABC, Cleared (route) SVFR, clear of cloud, in sight of ground, not above feet”.

6.15 SVFR flights are intended to provide flexibility to pilots who are unable to comply with IFR.

6.16 SVFR absolves the pilot-in-command from complying with the IFR, however, it does not absolve him from his responsibility of maintaining the minimum safe altitude.

INSTRUMENT FLIGHT RULES (IFR)

6.17 Aircraft may be flown in accordance with IFR irrespective of the meteorological conditions, but all aircraft flying above FL200 must comply with the IFR.

CHANGING FROM IFR TO VFR FLIGHT

6.18 Change from IFR to VFR flight is only acceptable when the pilot uses the specific expression “Cancel my IFR flight”, together with changes to be made to his current flight plan.

6.19 No invitation to change from IFR to VFR is to be made by ATC, either directly or by inference.

6.20 This change in the flight rules should be acknowledged by ATC with the phrase “IFR flight cancelled at(time)”.

6.21 If an ATSU, accepting the change from IFR to VFR, has reason to believe that IMC may be encountered along the route of flight, the pilot should be advised.

6.22 This change in the flight rules only affects the entries in Fields 8 and 15 of the flight plan and does not constitute a cancellation of the entire flight plan.
CHAPTER 7 - TRANSITION ALTITUDE AND TRANSITION LEVEL

INTRODUCTION

7.1 The procedures herein describe the method intended for use in providing adequate vertical separation between aircraft and adequate terrain clearance during all phases of a flight. This method is based on the following principles.
 a) during flight, when at or below a fixed altitude called the transition altitude (TA), an aircraft is flown at altitudes determined from an altimeter set at sea level pressure (QNH) and its vertical position is expressed in terms of altitudes;
 b) during flight above the TA an aircraft is flown along surfaces of constant atmospheric pressure based on an altimeter setting of 1013.2 hectopascals (hPa) (QNE) and throughout this phase of a flight the vertical position of an aircraft is expressed in terms of flight level (FL);
 c) the change in reference from altitude to flight levels, and vice versa, is made, when climbing through the TA and, when descending through the transition level (TL);
 d) during the approach to land, terrain clearance may be determined by using the QNH altimeter setting (giving altitude).

SYSTEM OF FLIGHT LEVELS

7.2 Flight level zero shall be located at the atmospheric pressure level of 1013.2 hectopascals. Consecutive flight levels shall be separated by a pressure interval corresponding to at least 500ft (152.4 meters) in the Standard Atmosphere.

7.3 Flight levels shall be numbered according to the following table which indicates the corresponding height in the Standard Atmosphere in feet:-

<table>
<thead>
<tr>
<th>FLIGHT LEVEL NUMBER</th>
<th>HEIGHT STANDARD ATMOSPHERE FEET METERS</th>
<th>FLIGHT LEVEL NUMBER</th>
<th>HEIGHT IN STANDARD ATMOSPHERE FEET METERS</th>
</tr>
</thead>
<tbody>
<tr>
<td>10</td>
<td>1 000 300</td>
<td>050</td>
<td>5 000 1 500</td>
</tr>
<tr>
<td>15</td>
<td>1 500 450</td>
<td>…</td>
<td>…</td>
</tr>
<tr>
<td>20</td>
<td>2 000 600</td>
<td>100</td>
<td>10 000 3 050</td>
</tr>
<tr>
<td>25</td>
<td>2 500 750</td>
<td>…</td>
<td>…</td>
</tr>
<tr>
<td>30</td>
<td>3 000 900</td>
<td>150</td>
<td>15 000 4 550</td>
</tr>
<tr>
<td>35</td>
<td>3 500 1 050</td>
<td>…</td>
<td>…</td>
</tr>
<tr>
<td>40</td>
<td>4 000 1 200</td>
<td>200</td>
<td>20 000 6 100</td>
</tr>
<tr>
<td>45</td>
<td>4 500 1 350</td>
<td>…</td>
<td>…</td>
</tr>
<tr>
<td></td>
<td>500 50 000</td>
<td>15 250</td>
<td></td>
</tr>
</tbody>
</table>

TRANSITION ALTITUDE (TA)

7.4 A transition altitude is specified for each aerodrome in the ZA_General_Procedures or ZA_ATC_Procedures (SSIs) for the major airfields.
7.5 The TA for all points of departure and arrival within 25 nautical miles of any aerodrome listed in the ZA_General_Procedures shall be the same as that listed for the relative aerodrome.
7.6 In VMC flights departing from, or arriving at points beyond 25 nautical miles from any of the aerodromes listed shall observe the height of 2000ft above the ground or water as the TA.
7.7 In IMC flights departing from, or arriving at points beyond 25 nautical miles from any of the aerodromes listed shall observe the lowest safe cruising altitude as the TA.
TRANSITION LEVELS (TL)

7.8 The change in reference from “flight level”, used while en-route, to “altitude” used in the vicinity of an aerodrome, is made at a horizontal transition place located above the transition altitude which is called the “transition level”.

7.9 Transition levels will be adjusted when barometric pressure changes beyond specified limits so that the TL will never be less than 1000ft above the TA.

7.10 The Air Traffic Service Unit at aerodromes will provide the current transition level for their aerodrome and points within 25 nautical miles of their aerodrome in the approach and landing instructions.

7.11 VMC flights intending to land at points beyond 25 nautical miles from any of the aerodromes listed shall observe the height of 3000 ft above the ground or water as the TL.

7.12 In IMC, flights intending to land at points beyond 25 nautical miles from any of the aerodromes listed shall observe the flight level 500ft above the lowest safe altitude as the TL.

APPLICATION OF PROCEDURE

TAKE-OFF AND CLIMB

7.13 A QNH altimeter setting will be made available to aircraft in the routine take-off and climb clearances.

7.14 Before take-off at least one altimeter in the aircraft shall be set to QNH and the vertical positioning of the aircraft during climb shall be reference to altitude until reaching the TA.

7.15 On reaching the TA at least one altimeter in the aircraft shall be set to 1013,2 hPa (29,92 in) and thereafter the vertical positioning of the aircraft shall be referred to in flight levels (FL).

Note: On reaching the TA pilots will re-set their altimeters to 1013,2 hPa without requesting ATC permission to do so, nor is it necessary to advise ATC that the change has been made.

EN ROUTE

7.16 Vertical separation during en-route flight shall be assessed in terms of flight levels.

7.17 The vertical position of an aircraft shall normally be expressed in terms of flight levels both in air reports and air traffic service messages.

APPROACH AND LANDING

7.18 A QNH altimeter setting shall be made available in the routine approach and landing clearances.

7.19 The vertical positioning of aircraft during approach shall be controlled with reference to flight levels until reaching the TL, except as provided for in the following paragraph.

7.20 Vertical positioning of aircraft above the TL may be by reference to altitude (QNH) or heights (QFE); provided that, after the descent to land is commenced, level flight above the TA is not indicated or anticipated.

7.21 This exception is intended to apply primarily to jet aircraft for which an uninterrupted descent from a high altitude is desirable.

7.22 On reaching the TL, pilots will reset their altimeters to the QNH without requesting ATC permission to do so, it is also not necessary to advise ATC that the change has been made.

MISSED APPROACH

7.23 The relevant parts of the foregoing procedures shall apply in the event of a missed approach.
PROCEDURES APPLICABLE TO OPERATORS (Including Pilots)

7.24 The levels at which the en-route stages of an IFR flight are to be conducted shall be specified in the flight plan in terms of Flight Levels. Stages conducted in the vicinity of an aerodrome shall be stated as altitudes if below the TA and in Flight Levels if above the TA.

7.25 There is no requirement for VFR flight to state its intended Flight Level/Altitude in a flight plan. However, where a level is stated it shall be:-
 a) In terms of Flight Levels if the flight is to be conducted at or above 1500ft above the surface; or
 b) In terms of Flight Levels or Altitude (by day only) if the flight is to be conducted below 1500ft above the surface.

7.26 The flight level, or levels, selected for a flight should:
 a) In IMC, ensure adequate terrain clearance, and
 b) For IFR flights, satisfy ATC clearance, and
 c) For all IFR and night flights and for VFR flights at or above 1500ft above the surface by day be compatible with the application of the Semi-circular Rule.

RESPONSIBILITY FOR DETERMINING THE CURRENT TRANSITION LEVEL

7.27 APP is responsible for determining and providing to arriving aircraft the current TL for their CTR. This level will also apply as the TL for any arriving aircraft landing within 25 nm of that unit.

7.28 At manned aerodrome which is not in a CTR the TWR or AFISU is responsible for determining the TL for their aerodrome and for any arriving aircraft landing within 25 nm of the aerodrome.

7.29 APP (or TWR or AFIS as applicable) must at all times be on the alert for changes in the QNH which will necessitate a change in the current TL accordingly without delay.

DETERMINATION OF THE CURRENT TRANSITION LEVEL

7.30 Transition Levels shall be determined with reference to the requirements as per local SSI’s.

7.31 In the table below, the current QNH must be applied to the table relevant to the station. The flight level indicated against the pressure range within which the current QNH falls, shall be the current TL.

7.32 This table ensures 1000 feet vertical separation between an aircraft at TA and one at TL.

QNH PRESSURES AT WHICH TRANSITION LEVEL SHALL BE ALTERED

7.33 All stations should include in their SSI’s a table as shown below in relation to their own TL.

<table>
<thead>
<tr>
<th>QNH IN HECTOPASCALS</th>
<th>959 TO 977</th>
<th>978 TO 995</th>
<th>996 TO 1013</th>
<th>1014 TO 1032</th>
<th>1033 TO 1050</th>
<th>1051 TO ABOVE</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>977</td>
<td>995</td>
<td>1013</td>
<td>1032</td>
<td>1050</td>
<td>ABOVE</td>
</tr>
</tbody>
</table>
CHAPTER 8 - SEMI-CIRCULAR RULE

FLIGHTS OBLIGED TO COMPLY WITH THE SEMI-CIRCULAR RULE

8.1 The following flights are obliged to comply with the Semi-Circular Rule when in level cruising flight:-
 a) IFR flights outside of controlled airspaces;
 b) VFR flights, except those operated in class B, C, D and E airspace’s, operating at 1500ft or more above the surface of the earth.
 c) All flights at night outside of controlled airspaces.

RVSM (Reduced Vertical Separation Minima)

8.2 South African airspace is operating with RVSM as of 25th September 2008, 0001Z.
8.3 See the IVAO HQ Training website for more information on RVSM & Semi-Circle, here.
8.4 Read this more comprehensive document if you more interested in RVSM. This is a Non-IVAO document and is only provided for interesting reading.
NON - RVSM

EVEN Flight Level
Track 180° to 359°

<table>
<thead>
<tr>
<th>VFR</th>
<th>IFR</th>
</tr>
</thead>
<tbody>
<tr>
<td>FL510</td>
<td>FL490</td>
</tr>
<tr>
<td>FL470</td>
<td>FL450</td>
</tr>
<tr>
<td>FL430</td>
<td>FL410</td>
</tr>
<tr>
<td>FL390</td>
<td>FL370</td>
</tr>
<tr>
<td>FL350</td>
<td>FL330</td>
</tr>
<tr>
<td>FL310</td>
<td>FL290</td>
</tr>
<tr>
<td>FL280</td>
<td>FL270</td>
</tr>
<tr>
<td>FL260</td>
<td>FL250</td>
</tr>
<tr>
<td>FL240</td>
<td>FL230</td>
</tr>
<tr>
<td>FL220</td>
<td>FL210</td>
</tr>
<tr>
<td>FL200</td>
<td>FL190</td>
</tr>
<tr>
<td>FL185</td>
<td>FL180</td>
</tr>
<tr>
<td>FL165</td>
<td>FL160</td>
</tr>
<tr>
<td>FL145</td>
<td>FL140</td>
</tr>
<tr>
<td>FL125</td>
<td>FL120</td>
</tr>
<tr>
<td>FL105</td>
<td>FL100</td>
</tr>
<tr>
<td>FL085</td>
<td>FL080</td>
</tr>
<tr>
<td>FL065</td>
<td>FL060</td>
</tr>
<tr>
<td>FL045</td>
<td>FL040</td>
</tr>
</tbody>
</table>

ODD Flight Level
Track 000° to 179°

<table>
<thead>
<tr>
<th>IFR</th>
<th>VFR</th>
</tr>
</thead>
<tbody>
<tr>
<td>FL510</td>
<td>FL490</td>
</tr>
<tr>
<td>FL470</td>
<td>FL450</td>
</tr>
<tr>
<td>FL430</td>
<td>FL410</td>
</tr>
<tr>
<td>FL390</td>
<td>FL370</td>
</tr>
<tr>
<td>FL350</td>
<td>FL330</td>
</tr>
<tr>
<td>FL310</td>
<td>FL290</td>
</tr>
<tr>
<td>FL280</td>
<td>FL270</td>
</tr>
<tr>
<td>FL260</td>
<td>FL250</td>
</tr>
<tr>
<td>FL240</td>
<td>FL230</td>
</tr>
<tr>
<td>FL220</td>
<td>FL210</td>
</tr>
<tr>
<td>FL200</td>
<td>FL190</td>
</tr>
<tr>
<td>FL185</td>
<td>FL180</td>
</tr>
<tr>
<td>FL165</td>
<td>FL160</td>
</tr>
<tr>
<td>FL145</td>
<td>FL140</td>
</tr>
<tr>
<td>FL125</td>
<td>FL120</td>
</tr>
<tr>
<td>FL105</td>
<td>FL100</td>
</tr>
<tr>
<td>FL085</td>
<td>FL080</td>
</tr>
<tr>
<td>FL065</td>
<td>FL060</td>
</tr>
<tr>
<td>FL045</td>
<td>FL040</td>
</tr>
<tr>
<td>FL030</td>
<td>FL035</td>
</tr>
<tr>
<td></td>
<td>VFR</td>
</tr>
<tr>
<td>----------------</td>
<td>------</td>
</tr>
<tr>
<td>EVEN Flight Level</td>
<td></td>
</tr>
<tr>
<td>Track 180° to 359°</td>
<td></td>
</tr>
<tr>
<td></td>
<td>FL510</td>
</tr>
<tr>
<td></td>
<td>FL490</td>
</tr>
<tr>
<td>VFR</td>
<td>FL470</td>
</tr>
<tr>
<td></td>
<td>FL450</td>
</tr>
<tr>
<td></td>
<td>FL430</td>
</tr>
<tr>
<td></td>
<td>FL410</td>
</tr>
<tr>
<td></td>
<td>FL400</td>
</tr>
<tr>
<td></td>
<td>FL390</td>
</tr>
<tr>
<td></td>
<td>FL380</td>
</tr>
<tr>
<td></td>
<td>FL370</td>
</tr>
<tr>
<td></td>
<td>FL360</td>
</tr>
<tr>
<td></td>
<td>FL350</td>
</tr>
<tr>
<td></td>
<td>FL340</td>
</tr>
<tr>
<td></td>
<td>FL330</td>
</tr>
<tr>
<td></td>
<td>FL320</td>
</tr>
<tr>
<td></td>
<td>FL310</td>
</tr>
<tr>
<td></td>
<td>FL300</td>
</tr>
<tr>
<td></td>
<td>FL290</td>
</tr>
<tr>
<td></td>
<td>FL280</td>
</tr>
<tr>
<td></td>
<td>FL270</td>
</tr>
<tr>
<td></td>
<td>FL260</td>
</tr>
<tr>
<td></td>
<td>FL250</td>
</tr>
<tr>
<td></td>
<td>FL240</td>
</tr>
<tr>
<td></td>
<td>FL230</td>
</tr>
<tr>
<td></td>
<td>FL220</td>
</tr>
<tr>
<td></td>
<td>FL210</td>
</tr>
<tr>
<td></td>
<td>FL200</td>
</tr>
<tr>
<td></td>
<td>FL190</td>
</tr>
<tr>
<td></td>
<td>FL185</td>
</tr>
<tr>
<td></td>
<td>FL180</td>
</tr>
<tr>
<td></td>
<td>FL175</td>
</tr>
<tr>
<td></td>
<td>FL170</td>
</tr>
<tr>
<td></td>
<td>FL165</td>
</tr>
<tr>
<td></td>
<td>FL160</td>
</tr>
<tr>
<td></td>
<td>FL155</td>
</tr>
<tr>
<td></td>
<td>FL150</td>
</tr>
<tr>
<td></td>
<td>FL145</td>
</tr>
<tr>
<td></td>
<td>FL140</td>
</tr>
<tr>
<td></td>
<td>FL135</td>
</tr>
<tr>
<td></td>
<td>FL130</td>
</tr>
<tr>
<td></td>
<td>FL125</td>
</tr>
<tr>
<td></td>
<td>FL120</td>
</tr>
<tr>
<td></td>
<td>FL115</td>
</tr>
<tr>
<td></td>
<td>FL110</td>
</tr>
<tr>
<td></td>
<td>FL105</td>
</tr>
<tr>
<td></td>
<td>FL100</td>
</tr>
<tr>
<td></td>
<td>FL095</td>
</tr>
<tr>
<td></td>
<td>FL090</td>
</tr>
<tr>
<td></td>
<td>FL085</td>
</tr>
<tr>
<td></td>
<td>FL080</td>
</tr>
<tr>
<td></td>
<td>FL075</td>
</tr>
<tr>
<td></td>
<td>FL070</td>
</tr>
<tr>
<td></td>
<td>FL065</td>
</tr>
<tr>
<td></td>
<td>FL060</td>
</tr>
<tr>
<td></td>
<td>FL055</td>
</tr>
<tr>
<td></td>
<td>FL050</td>
</tr>
<tr>
<td></td>
<td>FL045</td>
</tr>
<tr>
<td></td>
<td>FL040</td>
</tr>
<tr>
<td></td>
<td>FL035</td>
</tr>
<tr>
<td></td>
<td>FL030</td>
</tr>
</tbody>
</table>
CHAPTER 9 - FILING OF FLIGHT PLANS

9.1 All pilots wanting to fly on IVAO must file a flight plan (FPL) before their flight.

ACCEPTANCE OF A FLIGHT PLAN

9.2 The first ATSU receiving a flight plan, or change thereto, shall:
 a) Check it for compliance with the format and data conventions;
 b) Check it for completeness and, to the extent possible, for accuracy;
 c) Take action, if necessary, to make it acceptable to the air traffic services; and
 d) Indicate acceptance of the flight plan or change thereof, to the originator.

EXAMPLE

9.3 For the purpose of training, let’s file an IFR flight from Cape Town to Johannesburg. Open IVAP, click MAIN, ACARS, Send Flightplan. You will get the following screen:

Note: Standard equipment is considered to be VHF, RTF, ADF, VOR and ILS, unless another combination is prescribed by the appropriate ATS authority.

7 / AIRCRAFT IDENT: ZSABC
Your aircraft callsign.
This could be your aircraft’s registration, or the airline you fly for SAA123, NTW123, etc.
8 / FLIGHT RULES:

I IFR
V VFR
Y IFR then VFR
Z VFR then IFR

VFR: flight is done under visual meteorological conditions (VMC) – i.e. visibility is not less than 5km, 500ft vertical separation from cloud and 2000ft horizontal separation, with no more than 3/8ths of cloud surrounding aircraft. For operating at an aerodrome the ceiling must not be below 1500ft AGL.

IFR: flight must be IFR when weather conditions deteriorate below VMC conditions. An IFR flight is arranged so that the aircraft will be in controlled airspace for as much as the flight as possible.

TYPE OF FLIGHT:

S Scheduled: Scheduled air transport
N Non-scheduled air transport, charter flight.
M Military
X Other

9 / NUMBER:

1 Amount of aircraft flying on this flight plan (e.g. formation flights)

TYPE OF AIRCRAFT:

B763 4-letter ICAO identification code of aircraft.
E.g. C172 = Cessna 172, B763 = Boeing 767-300.

WAKE TURBULENCE:

H Heavy (heavier than 136000kg)
J Super (A380)

10 / EQUIPMENT:

SDRY Instrumentation/radio equipment on board
E.g. VOR/ILS/DME/VHF. Click the “…” to see all the options.

Note: If the letter Z is used, specify in Item 18 the other equipment carried, preceded by COM/ and/or NAV/ as appropriate.
The 2nd part of the equipment indicates the type of transponder onboard. For virtual flying always use C for Mode Charlie type transponder.

13 / DEPARTURE AERODROME: FACT
4-letter ICAO code for departure airport. FACT = Cape Town Intl.

DEPARTURE TIME: 2135
Time that aircraft will be departing. All times in aviation are in GMT time. So if departure time is 1200 SA time, we would put 1000Z on the flight plan because South Africa is GMT + 2.

15 / CRUISING SPEED: N490
Cruise speed in TAS or Mach.
The airspeed they want here is the cruise TAS (true air speed) NOT indicated airspeed.

LEVEL: F370
Cruising altitude on QNE (1013.25mb). All aircraft fly on flight levels so that they're instruments all have the similar pressure sub-scale setting on the altimeter. E.g. 2 aircraft can be indicating 31000ft and 30000ft respectively. But due to the sub-scale setting being different, they may very easily be at the same altitude. I'll explain this in more detail a little later.

ROUTE: TETAN UZ2 ESTED
The aircraft’s routing. Can include VOR, NDB, intersections/waypoints and airways/RNAV’s. Co-ordinates and Radial/DME are also accepted.

16 / DESTINATION AERODROME: FAJS
Airport aircraft is flying to. FAJS = O.R. Tambo International

TOTAL EET: 0200
Total Estimated Elapsed Time. Total flying time for this flight is about 2hr 00 minutes.

ALTERNATE AERODROME: FADN
Aerodrome to land at in case destination aerodrome becomes inaccessible due to poor weather or any other reason. In this case, FADN = Durban International

18 / OTHER INFORMATION: RMK/
Any other information the controllers should know: RMK/ remark OPR/ operator SAR/
search and rescue requirements.

19 / AIRCRAFT FUEL ENDURANCE: E/0400
How long aircraft can stay airborne for the given amount of fuel. 0400 = 4hrs

PERSONS ON BOARD: P/100
Total number of crew and passengers on the aircraft.

PILOT IN COMMAND (PIC): MARTIN SMIT
The name of the pilot in charge of the safety of those on board and the aircraft; should be your name.

AIRCRAFT COLOUR AND MARKINGS:
This is what other pilots flying close to you will see you as. For instance, if flying a B737-800, you can select KLM colour scheme, and this is what other pilots see you as. The MTL Dynamic Installer can be downloaded [here](#).
CHAPTER 10 - AIR TRAFFIC CONTROL CLEARANCES

GENERAL

10.1 ATC clearances are issued by ATC Units to aerodrome traffic and to IFR, SVFR and VFR flights operating within controlled airspaces.

10.2 Clearances are based on known traffic conditions which affect safety of aircraft operations. Such traffic conditions include not only aircraft in the air and on the manoeuvring area over which control is being exercised, but also any vehicular traffic or obstructions not permanently installed on the manoeuvring area.

10.3 ATC clearances constitute authority for an aircraft or vehicle to proceed within the limits stated in the clearance but they do not relieve a pilot or driver of a vehicle of any responsibility whatsoever in connection with a possible violation of applicable rules and regulations.

10.4 An ATC clearance may be issued in the form of an initial clearance or as an amendment to a previous clearance. An amendment shall automatically cancel any previous clearance issued.

CONTENTS OF AIR TRAFFIC CLEARANCES

10.5 An Air Traffic Control clearance shall include the following items:-
 a) aircraft identification;
 b) clearance limit;
 c) route;
 d) level of flight and changes of level.

10.6 The following items are to be added to a clearance as necessary:-
 a) ATCU identification;
 b) time restrictions;
 c) communications instructions;
 d) any special instructions e.g. rate of climb or descent, SIDs, STARs etc.

Note: Personnel relaying clearances to aircraft shall transmit such clearances in the exact phraseology in which they are received. (See Section 8 for phraseologies).

CLEARANCE LIMIT

10.7 A clearance limit is the point to which an aircraft is granted an Air Traffic Control clearance and shall be specified by naming:-
 a) an aerodrome;
 b) a reporting point;
 c) a controlled airspace boundary.

10.8 An aircraft will be cleared to the aerodrome of first intended landing when:-
 a) it is planned to remain within controlled airspace throughout the flight; or
 b) an aircraft intends to leave controlled airspace, pass through uncontrolled airspace, and re-enter controlled airspace. Such clearance will only be valid for those portions of the flight which are conducted within controlled airspace.

10.9 In both of the above cases such clearance may only be issued when:-
 a) prior to departure the flight will be coordinated between all ATCU’s concerned; or
 b) there is reasonable assurance that prior co-ordination will be effected ahead of the aircraft’s passage.

10.10 To make the position quite clear to pilots, the following phrase must be added to all clearances for flights which will be leaving controlled airspace:- “ZSABC, To leave controlled airspace at....(Control Area Boundary/Control Zone Boundary/position).”

ROUTES

10.11 Every endeavour shall be made to clear aircraft via the route or routes requested, where practicable.
CRUISING LEVELS

10.12 Normally, the cruising level requested in the flight plan is to be allocated, but if this level is not available, the nearest vacant level is to be allocated.

10.13 When two or more aircraft are at, or are requesting, the same cruising level, the preceding aircraft shall normally have priority.

PRIORITIES

10.14 Requests for clearances shall normally be dealt with in the order in which they are received and issued according to the traffic situation.

10.15 This order may be varied to facilitate the maximum number of flights with the least average delay. However, certain flights are given priority over others. The categorisation of these flights is given below.

a) (i) Aircraft in emergency (e.g. engine failure, fuel shortage, seriously ill person on board, ferry flights where one or more engines are inoperative).

(ii) Ambulance aircraft.

b) Normal flights which have filed a flight plan (e.g. scheduled services, charter, executive, private, positioning and military flights).

c) Special flights (e.g. survey flights, parachute dropping etc.).

d) Training flights. These should be fitted into the normal traffic pattern as the opportunity occurs.

EN-ROUTE AIRCRAFT

10.16 Air Traffic Control clearances must be issued early enough to ensure that they are transmitted to the aircraft in sufficient time for it to comply with them.

10.17 Aircraft on flight plans specifying that the initial portion of the flight will be uncontrolled and that the subsequent portion of the flight will be subject to air traffic control by an Area Control Centre after the control area of origin, shall be advised to contact the control centre in whose area controlled flight will be commenced for clearance.

10.18 Aircraft on flight plans specifying that the first portion of the flight will be subject to air traffic control, and that the subsequent portion will be uncontrolled, shall normally be cleared to the point at which the controlled flight terminates.

10.19 An Area Control Centre may request an adjacent area control centre to clear aircraft to a specified point during a specified period.

10.20 After the initial clearance has been issued to an aircraft at the point of departure, it will be the responsibility of the appropriate Area Control Centre to issue an amended clearance whenever necessary and to issue traffic information if required.

10.21 During the transonic and supersonic phases of a flight, amendments to the clearance should be kept to a minimum and must take due account of the operational limitations of the aircraft in these flight phases.

10.22 When so requested by the pilot, an aircraft shall be cleared for cruise climb whenever traffic conditions and co-ordination procedures permit. Such clearance shall be for cruise climb either above a specified level or between specified levels.

10.23 When so requested by the pilot, an aircraft should, insofar as practicable, be authorised to absorb a specified period of notified terminal delay by cruising at a reduced speed for the latter portion of its flight. The specified period may be the whole or part of the notified terminal delay.

ROUTE OF FLIGHT

10.27 The route of flight shall be detailed in each clearance when deemed necessary. The phrase “cleared via flight planned route” may be used to describe any route or portion thereof provided the route or portion thereof is identical to that filed in the flight plan and sufficient routing details are given to definitely establish the aircraft on its route. The phrases “cleared via (designation) departure” or “cleared via (destination) arrival” may be used when standard departure or arrival routes have been established by the appropriate ATS authority and published in Aeronautical Information Publications.
CHAPTER 11 - RADIO FAILURE

11.1 On IVAO, we could consider a Team Speak breakdown as a radio failure. However, you should be able to contact the controller on text mode via IvAp on the ATC frequency or with the .msg command. But if for any reason, both voice and text modes are inoperative, here is what you can do.

PROCEDURES

11.2 Squawk 7600
11.3 VMC: Continue VMC
 Land at nearest suitable aerodrome.
11.4 IMC:
 Try to fix your problem (connection, voice software) and advise the controller when the situation is back to normal.

 Arrival
 If having received ATC instructions, follow those instructions and when reaching the clearance limit, resume the flight according to your flight plan as above.
 If under approach control, follow last ATC instructions (or see paragraph c below) then execute a published instrument approach procedure.
 Enter the hold and begin descend as close as possible to ETA + 10’.
 STAR: See STAR chart
 Complete full instrument letdown and arrive within 30min of the above time.

 Departure (RADAR control)
 Decide to return to departure field or continue as per FPL. If returning see Arrival, otherwise if under RADAR departure turn onto FPL route and climb to last assigned level. Maintain for 3 minutes, climb to FPL Flight Level.
 SID: See SID chart
CHAPTER 12 - EMERGENCY PROCEDURES

GENERAL

12.1 When an emergency is declared by an aircraft, the ATS unit should:
 a) take all necessary steps to ascertain aircraft identification and type, the type of
 emergency, the intentions of the flight crew as well as the position and level of the
 aircraft if necessary;
 b) decide upon the most appropriate type of assistance which can be rendered;
 c) enlist the aid of any other ATS unit or other services which may be able to provide
 assistance to the aircraft;
 d) provide the flight crew with any information requested as well as any additional
 relevant information, such as details on suitable aerodromes, minimum safe altitudes,
 weather information;
 e) notify the appropriate ATS units.

Changes of radio frequency and SSR code should be avoided if possible and should
normally be made only when or if an improved service can be provided to the aircraft
concerned.

Manoeuvring instructions to an aircraft experiencing engine failure should be limited
to a minimum.

PRIORITY

12.2 An aircraft known or believed to be in a state of emergency shall be given priority over
other aircraft.

EMERGENCY DESCENT

12.3 Upon receipt of advice that an aircraft is making an emergency descent through other
traffic, all possible action shall be taken immediately to safeguard all aircraft concerned.
When deemed necessary, air traffic control units shall immediately broadcast an emergency
message by means of voice and text modes to pilots and chat windows to other controllers.

ACTION BY THE PILOT-IN-COMMAND : will clear the specified areas and stand by on
the radio frequency for further clearances from the ATC unit.

ACTION BY THE AIR TRAFFIC CONTROL UNIT : The CTR, APP or TWR concerned
shall forward further clearances to all aircraft involved as to additional procedures to
be followed during and subsequent to the emergency descent. The ATS unit
concerned shall additionally inform by chat any other ATS units which may be
affected.

EMERGENCY DEFINITIONS

12.4 Two states of emergency have to be considered:
 a) Distress:
 A condition of being threatened by serious and/or imminent danger and of requiring
 immediate assistance.
 Examples: ditching, crash landing imminent, total engine failure, etc.
 b) Urgency:
 A condition concerning the safety of an aircraft or some persons on board but which
 does not required immediate assistance.
 Examples: lost, fuel shortage, partial engine failure, navigation system failure, etc.

EMERGENCY MESSAGES

12.5
 a) Distress:
 Mayday, Mayday, Mayday, this is "aircraft callsign"
 then transmit as many of the following elements as necessary and as time permits:
 - aircraft position and heading
 - flight level, altitude or height
- aircraft type and POB (number of persons on board)
- nature of emergency
- any other relevant piece of information (weather, endurance, intentions...)

b) Urgency:

Pan, Pan, Pan, this is "aircraft callsign"
then transmit as many of the following elements as necessary and as time permits:
- aircraft position and heading
- flight level, altitude or height
- aircraft type and POB (number of persons on board)
- nature of emergency
- any other relevant piece of information (weather, endurance, intentions...)

v1.1 - Copyright© IVAO South Africa by Martin Smit
CHAPTER 13 - HOLDING AIRCRAFT IN FLIGHT

13.1 In controlled airspace aircraft may be instructed to hold (in advisory and uncontrolled airspace they may be requested to hold):
 a) IFR at any radio facility or fix as determined by navigational aids
 E.g. VOR/DME which the aircraft is equipped to use; or
 b) VFR to maintain VMC, when so requested by the pilot, at a radio facility or a geographical location when the weather conditions permit.

MINIMUM HOLDING ALTITUDE

13.2 The minimum holding altitude shall be as prescribed in the appropriate holding and approach chart.
13.3 For holding aircraft en-route the lowest safe IFR flight level must be regarded as the minimum holding level.

HOLDING PROCEDURE

13.4 The standard holding procedure shall be accomplished as follows:
 a) after arriving over the holding point manoeuvre so as to align the aircraft inbound towards the holding point on the specified inbound track;
 b) when again over the holding point execute a 180° rate one turn so as to fly outbound on a track parallel to the specified inbound track;
 c) continue outbound for a period of either 1 minute or 2 minutes as specified, or for a specified distance, as appropriate;
 d) execute a 180° rate one turn so as to re-align the aircraft on the specified inbound track.

OBSERVANCE OF PRESCRIBED HOLDING PROCEDURES

13.5 At facilities for which holding procedures have been published in the charts, aircraft required to hold shall do so in accordance with the published procedures.
13.6 If the pilot is not conversant with the following procedures he will ask ATC for details of the pattern and ATC will provide the following information:
 a) magnetic track towards the facility;
 b) direction of turns;
 c) time or distance on outbound leg.
 E.g. Inbound track 160 degrees magnetic turns to the right, 2 minutes.

HOLDING AT FACILITIES FOR WHICH PROCEDURES HAVE NOT BEEN PUBLISHED

13.7 When an ATC requires an aircraft to hold at a facility for which a procedure has not been published he shall specify the procedure to be flown as in (a), (b) and (c) above.

SEPARATION OF HOLDING AIRCRAFT

13.8 Holding IFR flights shall be provided with standard separation in Section 6.

HOLDING VFR, OR MAINTAINING VMC AT A GEOGRAPHIC LOCATION

13.9 Aircraft holding VFR, or maintaining VMC at a geographic location are not required to follow a specific pattern. The following RTF phraseology shall be used:-
 "Holding maintaining VMC (or hold VFR) at (place) until (time)"
13.10 VFR flights need not be provided with separation but IFR aircraft operating in VMC, unless otherwise requested by pilots concerned, shall be provided with separation.